Refine Your Search

Topic

Search Results

Technical Paper

Effectiveness of Polyurethane Foam in Energy Absorbing Structures

1982-02-01
820494
Future vehicle safety, performance and fuel economy objectives make the development of new materials, concepts and methods of crash energy management desirable. The technique of foam filling structural rails for increased energy absorption was investigated as one such concept. A fractional factorial test program was established to evaluate the weight effectiveness of polyurethane foam as an energy absorber and stabilizer. The experiment provided the quantitative effects of design parameter, varability of results and statistical significance of each parameter with regard to crash characteristics. High density foam was found to be weight effective as a structural reinforcement, but not as an energy absorber. Medium density foam improves the energy absorption of a section. Equivalent energy, however, can be absorbed more weight effectively by changing the metal thickness or the section size.
Technical Paper

Application of a Mini-Dilution Tube in the Study of Fuel Effects on Stratified Charge Engine Emissions and Combustion

1981-10-01
811198
A mini-dilution tube to measure particulate emissions is described and results obtained in an application are presented. The application selected is a study of fuel effects on stratified charge engine emission and combustion characteristics. The mini-dilution tube was developed to provide a capability for particulate measurements with dynamometer engines. The device has been demonstrated to yield particulate mass results agreeing to within 10 percent of those with a full scale tunnel in steady state tests with diesel powered vehicles. A PROCO engine modified by incorporation of Torch Ignition was used in the study. Fuels were a wide cut gasoline, methanol and Indolene Clear gasoline. The engine was operated at a speed of 1250 rpm with an indicated mean effective pressure of 390 kPa. Spark timing, injection timing, EGR and equivalence ratio were varied.
Technical Paper

Stoichiometric Air-Fuel Ratio Control Analysis

1981-02-01
810274
A great deal of current automotive engineering effort involves the development of three-way catalyst-based emission control systems that seek to minimize fuel consumption while simultaneously meeting stringent exhaust emission standards. Mitigation of emissions is enhanced in a three-way catalyst system when the system air-fuel ratio (A/F) is in proximity to ideal burning or stoichiometry. This paper is concerned with extending methods used for determining engine calibrations to closed-loop systems with three-way catalysts. The paper presents a simulation model that employs experimentally obtained data to characterize the A/F control loop.
Technical Paper

Noise Abatement of Sliding Chutes for Metal Stamping Production

1980-02-01
800493
Identification of the noise generating mechanisms of gravity action and vibrator stimulated sliding chutes has resulted in the development of practical and effective noise abatement treatments for both. In the case of gravity action chutes the application of foam-backed thin and narrow spring steel plates on the chute surface achieves the desired effect with noise reduction of 14 to 25 dB(A). With vibrator stimulated chutes progressive steps were taken to attenuate source noise, chute radiation noise and the non-productive component of the force vector from the vibrator, resulting in noise reduction of 25 to 30 dB(A).
Technical Paper

Metal Stamping Presses Noise Investigation and Abatement

1980-02-01
800495
Noise generating mechanisms connected with steel-blanking operation has been identified and their engineering treatments developed and tested. Use of rubber-metal laminates proved to be successful for cushioning impacts in kinematic pairs and joints. Use of plastic for the stripper plate construction was recommended. The “die stiffener” concept was developed to reduce main noise peak associated with punch breakthrough. Screening of the die cavity by a transparent curtain of overlapping PVC strips was shown to be effective. A pulse load simulator with adjustable load rate and amplitude has been developed to facilitate testing of presses.
Technical Paper

Noise Abatement of In-Plant Trailers

1980-02-01
800494
In-plant trailers constitute a large portion of material handling system in manufacturing plants of the automotive industry. The trailers are among the most intensive noise sources, with radiated noise reaching 110 dBA (Leq). High dynamic loads are also generated on the floor and in the trailer structure. These dynamic loads lead to maintenance problems and inflated inventory of the trailers. Principal mechanisms responsible for generating noise and dynamic loads are identified and treatments to reduce noise and dynamic loads have been developed and investigated on standard trailers. Test results show: for an empty trailer, application of the proposed nonlinear suspension reduces noise 16–18 dBA (Leq) and dynamic load 10 times; for a trailer with an empty rack, application of the proposed nonlinear rack cushion leads to 3–5 dBA (Leq) noise reduction in addition to 8–10 dBA (Leq) reduction due to the suspension.
Technical Paper

An Electrohydraulic Gas Sampling Valve with Application to Hydrocarbon Emissions Studies

1980-02-01
800045
Design and development of an electrohydraulically actuated gas sampling valve is presented for use in auto engine combustion studies. The valve was developed with particular emphasis on sampling within the vicinity of the wall quench layer, requiring minimum leakage rates to avoid sample contamination and flush seating of the valve-stem to valve-seat to avoid perturbations of the wall layer. Response in the range of 0.4 to 1.0 milliseconds is attainable for variable valve lifts measured between 0.01 to 0.30 mm while using a net sealing force of approximately 750N. Gas leakage rates ranged from 0.05% to 1% of the sample mass flow rate when sampling from estimated distances from the wall of 0.3 mm to 0.03 mm, respectively, at a cylinder pressure of 10 bar. The gas sampling valve is presently coupled to a gas chromatograph to measure concentrations of major species components.
X